Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pathway of the Microtubule-Dynein ATPase and the Structure of Dynein: A Comparison with Actomyosin

Authors: Kenneth A. Johnson;

Pathway of the Microtubule-Dynein ATPase and the Structure of Dynein: A Comparison with Actomyosin

Abstract

Dynein and myosin show several important similarities in design as well as some interesting differences in detail. Both ATPases function as crossbridges that undergo microscopic movements to drive the sliding of filaments, which results in macroscopic movements. They share a common design employing globular heads attached to flexible strands. Each head contains one ATP-binding site and one filament-binding site, and the binding of ATP induces an extremely rapid dissociation of the crossbridge-filament "rigor" complex. Following ATP hydrolysis, which is readily reversible, the crossbridge reassociates with the filament and returns to its original state with the release of products. Thus, the nucleotide-induced changes in conformation are effectively used to couple the hydrolysis of ATP to the dissociation and reassociation of the crossbridge in order to produce a force for net movement according to the Lymn-Taylor-Eisenberg model. The utilization of nucleotide-binding energy to induce a change in conformation can be rationalized in terms of our understanding of enzyme catalysis in general, whereby substrate binding energy is used to induce a change in conformation that stabilizes the transition state for catalysis. In these crossbridge ATPases, the substrate-induced change in conformation also serves to weaken the crossbridge-filament interaction. The pathway is symmetrical, with a return to the tight (filament) binding state coupled to product release. The ball on a string design may provide a reasonable basis to explain how a unidirectional force is obtained from a symmetrical cycle; opposite changes in conformation with the binding and release of the nucleotide produce a significant force only when pulling on the flexible strand. Moreover, the very rapid dissociation of the crossbridge following ATP binding limits the time that a negative force is in effect and also prevents a rigor crossbridge from retarding the sliding movements generated by other crossbridges. Myosin and dynein exhibit nearly identical kinetic constants governing ATP binding and the ATP-induced dissociation of the crossbridge. These appear as invariant steps that may reflect the basic principles of enzyme catalysis as applied to the mechanochemical cycle. The rates of ATP hydrolysis and synthesis by myosin and dynein differ slightly, but in each case the reactions are readily reversible with an equilibrium constant less than one. Steps involving the loss and rebinding of products occur at rates two to three orders of magnitude faster for dynein than for myosin.(ABSTRACT TRUNCATED AT 400 WORDS)

Keywords

Adenosine Triphosphatases, Models, Molecular, Macromolecular Substances, Protein Conformation, Dyneins, Vanadium, Actomyosin, Microtubules, Models, Biological, Kinetics, Microscopy, Electron, Structure-Activity Relationship, Adenosine Triphosphate, Microscopy, Electron, Scanning, Animals, Vanadates

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    240
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
240
Top 10%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!