<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This paper investigates the direct risks and harms associated with modern text-to-image generative models, such as DALL-E and Midjourney, through a comprehensive literature review. While these models offer unprecedented capabilities for generating images, their development and use introduce new types of risk that require careful consideration. Our review reveals significant knowledge gaps concerning the understanding and treatment of these risks despite some already being addressed. We offer a taxonomy of risks across six key stakeholder groups, inclusive of unexplored issues, and suggest future research directions. We identify 22 distinct risk types, spanning issues from data bias to malicious use. The investigation presented here is intended to enhance the ongoing discourse on responsible model development and deployment. By highlighting previously overlooked risks and gaps, it aims to shape subsequent research and governance initiatives, guiding them toward the responsible, secure, and ethically conscious evolution of text-to-image models.
Accepted for publication in 2023 AAAI/ACM Conference on AI, Ethics, and Society (AIES 2023)
FOS: Computer and information sciences, Computer Science - Computers and Society, Computers and Society (cs.CY)
FOS: Computer and information sciences, Computer Science - Computers and Society, Computers and Society (cs.CY)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 34 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |