
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>This paper proposes concentrated geo-privacy (CGP), a privacy notion that can be considered as the counterpart of concentrated differential privacy (CDP) for geometric data. Compared with the previous notion of geo-privacy [ABCP13, CABP13], which is the counterpart of standard differential privacy, CGP offers many benefits including simplicity of the mechanism, lower noise scale in high dimensions, and better composability known as advanced composition. The last one is the most important, as it allows us to design complex mechanisms using smaller building blocks while achieving better utilities. To complement this result, we show that the previous notion of geo-privacy inherently does not admit advanced composition even using its approximate version. Next, we study three problems on private geometric data: the identity query, k nearest neighbors, and convex hulls. While the first problem has been previously studied, we give the first mechanisms for the latter two under geo-privacy. For all three problems, composability is essential in obtaining good utility guarantees on the privatized query answer.
Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Cryptography and Security, Computer Science - Data Structures and Algorithms, Computer Science - Computational Geometry, Data Structures and Algorithms (cs.DS), Cryptography and Security (cs.CR)
Computational Geometry (cs.CG), FOS: Computer and information sciences, Computer Science - Cryptography and Security, Computer Science - Data Structures and Algorithms, Computer Science - Computational Geometry, Data Structures and Algorithms (cs.DS), Cryptography and Security (cs.CR)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
