Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Building Structured Databases of Factual Knowledge from Massive Text Corpora

Authors: Meng Jiang; Jingbo Shang; Xiang Ren; Jiawei Han;

Building Structured Databases of Factual Knowledge from Massive Text Corpora

Abstract

In today's computerized and information-based society, people are inundated with vast amounts of text data, ranging from news articles, social media post, scientific publications, to a wide range of textual information from various domains (corporate reports, advertisements, legal acts, medical reports). To turn such massive unstructured text data into structured, actionable knowledge, one of the grand challenges is to gain an understanding of the factual information (e.g., entities, attributes, relations) in the text. In this tutorial, we introduce data-driven methods on mining structured facts (i.e., entities and their relations/attributes for types of interest) from massive text corpora, to construct structured databases of factual knowledge (called StructDBs). State-of-the-art information extraction systems have strong reliance on large amounts of task/corpus-specific labeled data (usually created by domain experts). In practice, the scale and efficiency of such a manual annotation process are rather limited, especially when dealing with text corpora of various kinds (domains, languages, genres). We focus on methods that are minimally-supervised, domain-independent, and language-independent for timely StructDB construction across various application domains (news, social media, biomedical, business), and demonstrate on real datasets how these StructDBs aid in data exploration and knowledge discovery.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!