Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://www-2.cs.cmu....arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal power allocation in server farms

Authors: Harchol-BalterMor; GandhiAnshul; LefurgyCharles; DasRajarshi;

Optimal power allocation in server farms

Abstract

Server farms today consume more than 1.5% of the total electricity in the U.S. at a cost of nearly $4.5 billion. Given the rising cost of energy, many industries are now seeking solutions for how to best make use of their available power. An important question which arises in this context is how to distribute available power among servers in a server farm so as to get maximum performance. By giving more power to a server, one can get higher server frequency (speed). Hence it is commonly believed that, for a given power budget, performance can be maximized by operating servers at their highest power levels. However, it is also conceivable that one might prefer to run servers at their lowest power levels, which allows more servers to be turned on for a given power budget. To fully understand the effect of power allocation on performance in a server farm with a fixed power budget, we introduce a queueing theoretic model, which allows us to predict the optimal power allocation in a variety of scenarios. Results are verified via extensive experiments on an IBM BladeCenter. We find that the optimal power allocation varies for different scenarios. In particular, it is not always optimal to run servers at their maximum power levels. There are scenarios where it might be optimal to run servers at their lowest power levels or at some intermediate power levels. Our analysis shows that the optimal power allocation is non-obvious and depends on many factors such as the power-to-frequency relationship in the processors, the arrival rate of jobs, the maximum server frequency, the lowest attainable server frequency and the server farm configuration. Furthermore, our theoretical model allows us to explore more general settings than we can implement, including arbitrarily large server farms and different power-to-frequency curves. Importantly, we show that the optimal power allocation can significantly improve server farm performance, by a factor of typically 1.4 and as much as a factor of 5 in some cases.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    370
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
370
Top 1%
Top 0.1%
Top 1%
bronze