
handle: 20.500.14243/102658 , 11573/1476563
In this paper we study the trade-offs in designing efficient caching systems for Web search engines. We explore the impact of different approaches, such as static vs. dynamic caching, and caching query results vs. caching posting lists. Using a query log spanning a whole year we explore the limitations of caching and we demonstrate that caching posting lists can achieve higher hit rates than caching query answers. We propose a new algorithm for static caching of posting lists, which outperforms previous methods. We also study the problem of finding the optimal way to split the static cache between answers and posting lists. Finally, we measure how the changes in the query log affect the effectiveness of static caching, given our observation that the distribution of the queries changes slowly over time. Our results and observations are applicable to different levels of the data-access hierarchy, for instance, for a memory/disk layer or a broker/remote server layer.
H.3.3 Information Search and Retrieval. Search process, Web search, Caching, H.3.4 Systems and Software. Distributed systems, H.3.4 Systems and Software. Performance evaluation (efficiency and effectiveness)
H.3.3 Information Search and Retrieval. Search process, Web search, Caching, H.3.4 Systems and Software. Distributed systems, H.3.4 Systems and Software. Performance evaluation (efficiency and effectiveness)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 159 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
