
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>To help understand various reproducing kernels used in applied sciences, we investigate the inclusion relation of two reproducing kernel Hilbert spaces. Characterizations in terms of feature maps of the corresponding reproducing kernels are established. A full table of inclusion relations among widely-used translation invariant kernels is given. Concrete examples for Hilbert–Schmidt kernels are presented as well. We also discuss the preservation of such a relation under various operations of reproducing kernels. Finally, we briefly discuss the special inclusion with a norm equivalence.
Mathematics - Functional Analysis, FOS: Computer and information sciences, Computer Science - Machine Learning, FOS: Mathematics, Functional Analysis (math.FA), Machine Learning (cs.LG)
Mathematics - Functional Analysis, FOS: Computer and information sciences, Computer Science - Machine Learning, FOS: Mathematics, Functional Analysis (math.FA), Machine Learning (cs.LG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
