
Just as gravitons can carry energy, they can also be used to transmit information. It follows that an entropy should be associated with gravitational degrees of freedom, independent of the presence or absence of black holes. In this essay, we discuss how one might count gravitational entropy given a classical gravitational field. Our suggestion is motivated by a derivation of the covariant entropy bound in which a gravitational term appears naturally.
Classical and relativistic thermodynamics, Gravitational waves
Classical and relativistic thermodynamics, Gravitational waves
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
