Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MINIMUM SEPARATION IN WEIGHTED SUBDIVISIONS

Authors: James Palmer; Ovidiu Daescu;

MINIMUM SEPARATION IN WEIGHTED SUBDIVISIONS

Abstract

We present polynomial time results for computing a minimum separation between two regions in a planar weighted subdivision. Our results are based on a (more general) theorem that characterizes a class of functions for which optimal solutions arise on the boundary of the feasible domain. A direct consequence of this theorem is that a minimum separation goes through a vertex of the weighted subdivision. We also consider extensions and present results for the 3-D case and for a more general case of the 2-D separation problem, in which the separation (link) has associated an ϵ-width. Our results are the first nontrivial upper bounds for these problems. We also discuss simple approximation algorithms for the 2-D case and present a prune-and-search approach that can be used with either the continuous or the approximate solutions to speed up the computation. We have implemented a variant of the two region minimum separation algorithm based on the prune-and-search scheme.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!