
We present polynomial time results for computing a minimum separation between two regions in a planar weighted subdivision. Our results are based on a (more general) theorem that characterizes a class of functions for which optimal solutions arise on the boundary of the feasible domain. A direct consequence of this theorem is that a minimum separation goes through a vertex of the weighted subdivision. We also consider extensions and present results for the 3-D case and for a more general case of the 2-D separation problem, in which the separation (link) has associated an ϵ-width. Our results are the first nontrivial upper bounds for these problems. We also discuss simple approximation algorithms for the 2-D case and present a prune-and-search approach that can be used with either the continuous or the approximate solutions to speed up the computation. We have implemented a variant of the two region minimum separation algorithm based on the prune-and-search scheme.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
