
The local moving frame approach is employed to study the bifurcation of a degenerate heterodimensional cycle with orbit-flip in its nontransversal orbit. Under some generic hypotheses, we provide the conditions for the existence, uniqueness and noncoexistence of the homoclinic orbit, heteroclinic orbit and periodic orbit. And we also present the coexistence conditions for the homoclinic orbit and the periodic orbit. But it is impossible for the coexistence of the periodic orbit and the persistent heterodimensional cycle or the coexistence of the homoclinic loop and the persistent heterodimensional cycle. Moreover, the double and triple periodic orbit bifurcation surfaces are established as well. Based on the bifurcation analysis, the bifurcation surfaces and the existence regions are located. An example of application is also given to demonstrate our main results.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
