
pmid: 27771858
Using rigorous low-Reynolds-number hydrodynamic theory on curved surfaces, we provide, via a Stokeslet-type approach, a general and concise expression for the leading-order curvature correction to the canonical, planar, Saffman-Delbrück value of the diffusion constant for a small inclusion embedded in an arbitrarily (albeit weakly) curved fluid membrane. In order to demonstrate the efficacy and utility of this general result, we apply our theory to the specific case of calculating the diffusion coefficient of a locally curvature inducing membrane inclusion. By including both the effects of inclusion and membrane elasticity, as well as their respective thermal shape fluctuations, excellent agreement is found with recently published experimental data on the surface tension dependent mobility of membrane bound inclusions.
Materials Science(all), Chemistry(all), Biophysics, Surfaces and Interfaces, Biotechnology
Materials Science(all), Chemistry(all), Biophysics, Surfaces and Interfaces, Biotechnology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
