
doi: 10.1139/o54-026 , 10.1139/y54-026
pmid: 13150246
Sedimentation, diffusion, and viscosity measurements were made on five unfractionated samples of sodium alginate ranging in intrinsic viscosity from 3.1 to 17.5. Diffusion coefficients were subject to large errors and are believed to be overestimated.Though the molecular weights obtained from sedimentation–diffusion (Svedberg equation) and sedimentation – intrinsic viscosity (Perrin–Simha equations) showed good agreement and yielded values of 3 to 21 × 104, higher values (4.6 to 37 × 104) from sedimentation–viscosity (Mandelkern–Flory equation) appear to be the better estimates. A linear relation between intrinsic viscosity and molecular weight was found with a slope (Mandelkern–Flory equation values) equivalent to Km = 13.9 × 10−3. The results indicate that sodium alginate has a relatively high extension ratio.
Molecular Weight, Glucuronic Acid, Alginates, Hexuronic Acids, Hydrodynamics, Humans
Molecular Weight, Glucuronic Acid, Alginates, Hexuronic Acids, Hydrodynamics, Humans
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 20 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
