Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Bacteriol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Bacteriology
Article . 1962 . Peer-reviewed
License: ASM Journals Non-Commercial TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

OXIDATIVE METABOLISM AND THE GLYOXYLATE CYCLE IN PSEUDOMONAS INDIGOFERA

Authors: Bruce A. McFadden; William V. Howes;

OXIDATIVE METABOLISM AND THE GLYOXYLATE CYCLE IN PSEUDOMONAS INDIGOFERA

Abstract

McFadden, Bruce A. (Washington State University, Pullman, Wash.) and William V. Howes . Oxidative metabolism and the glyoxylate cycle in Pseudomonas indigofera . J. Bacteriol. 84: 72–76. 1962.—Oxidative patterns of Pseudomonas indigofera have been investigated. Intact cells oxidize acetate, ethanol, fumarate, glyoxylate, α-ketoglutarate, malate, oxaloacetate, pyruvate, and succinate to greater than 35% of completion. Isocitrate is oxidized to 21% of completion. Citrate is not oxidized by whole cells but is oxidized by cell-free preparations, as are fumarate, isocitrate, malate, and succinate. These patterns are suggestive of the operation of the tricarboxylic acid cycle. Investigations of levels of isocitrate lyase and malate synthase as functions of growth substrate have been conducted. Assays for these enzymes in “soluble” preparations were performed under ostensibly optimal conditions for catalysis. Growth substrates used at 0.3% were: (i) ethanol, (ii) glucose, (iii) succinic acid, and (iv) yeast extract. Specific activities of isocitrate lyase were: for (i) 3.80, (ii) 0.61, (iii) 1.47, and (iv) 1.33; activities of malate synthase were: for (i) 0.18, (ii) 0.032, (iii) 0.021, and (iv) 0.029. Additionally, the isocitrate lyase level from butyrate-grown cells was similar to that for ethanol-grown cells; the specific activity of malate synthase was about 60% as high. Specific activities of these enzymes were reproducible when conditions of sonic disruption were standardized. Longer durations of disruption decreased both activities.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    23
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
23
Average
Top 10%
Top 10%
bronze