
doi: 10.1117/12.850225
A method based on compressive sampling to achieve superresolution in ISAR imaging is presented. The superresolution ISAR imaging algorithm is implemented by enforcing the sparsity constraints via random compressive sampling of the measured data. Sparsity constraint ratio (SCR) is used as a design parameter. Mutual coherence is used as a quantitative measure to determine the optimal SCR. ISAR data for full angular sector as well as different partial angular sectors are utilized in this study. Results show that significant resolution enhancement is achieved around optimal SCR of 0.2.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
