Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Microloading effect in reactive ion etching

Authors: Hans-Olof Blom; Christer Hedlund; Sören Berg;

Microloading effect in reactive ion etching

Abstract

The etch rate of silicon, during reactive ion etching (RIE), depends on the total exposed area. This is called the loading effect. However, local variations in the pattern density will, in a similar way, cause local variations in the etch rate. This effect is caused by a local depletion of reactive species and is called the microloading effect. Silicon wafers patterned with silicon dioxide have been etched in order to study the microloading effect. The pattern consists of a large exposed area and narrow lines at different distances from the edge of the large area. This arrangement makes it possible to study how the distance from the large area, which depletes the etchants, influences the etch rate. The influence of different processing parameters like, e.g., pressure, gas flow rate, and flow direction on the microloading effect have been investigated. It has been found that the microloading effect is small (<10%) compared to other pattern dependent nonuniformities. It is also shown that the nonuniformities caused by the microloading effect can be decreased by, e.g., decreasing the pressure or increasing the gas flow rate.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    106
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
106
Top 10%
Top 1%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!