<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Abstract The development of phase-resolved real-time wave forecasting is outlined. This framework is an enhancement over previous work in that the algorithm of real-time wave prediction is extended into multidirectional seas by including the wave measurements and components in direction. However, the computations with multidirectional seas become much more numerically expensive, and hence it is often not possible to accomplish a real-time system of nonlinear ocean wave prediction. Accordingly, we suggest an improved assimilation procedure in the process of wave reconstruction, which is proven to alleviate the computational costs and establish the numerical stability of the Lagrangian approach. In addition, given an observation zone recorded by an optical sensor mounted on a fixed offshore structure, we provide a spatio-temporal prediction zone where it is suitable to obtain the prediction of the wave field by evolving the reconstructed wave information in time and space. In order to validate the phase-resolved wave forecasting, we conducted a tank-scale experimental campaign with unidirectional seas (long-crested waves) and multidirectional seas (short-crested waves). Through the comparison of model performance against the laboratory data between unidirectional and multidirectional seas, it is confirmed that the directional wave components are necessarily considered to increase model accuracy in the multidirectional case as in the unidirectional case.
[SPI]Engineering Sciences [physics], Ocean waves Phase-resolved model Real-time prediction, Ocean waves, Real-time prediction, Phase-resolved model
[SPI]Engineering Sciences [physics], Ocean waves Phase-resolved model Real-time prediction, Ocean waves, Real-time prediction, Phase-resolved model
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |