<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
AbstractWater‐quality conditions in surficial unconsolidated aquifers were assessed in five agricultural regions in the United States. The assessment covers the Delmarva Peninsula, and parts of Long Island, Connecticut, Kansas, and Nebraska, and is based on water‐quality and ancillary data collected during the 1980s. Concentrations of nitrate in ground water in these areas have increased because of applications of commercial fertilizers and manure. Nitrate concentrations exceed the maximum contaminant level (MCL) for drinking water of 10 milligrams per liter as nitrogen established by the U.S. Environmental Protection Agency in 12 to 46 percent of the wells sampled in the agricultural regions. Concentrations of nitrate are elevated within the upper 100 to 200 feet of the surficial aquifers. Permeable and sandy deposits that generally underlie the agricultural areas provide favorable conditions for vertical leaching of nitrate to relatively deep parts of the aquifers. The persistence of nitrate at such depths is attributed to aerobic conditions along ground‐water‐flow paths. Concentrations of nitrate are greatest in areas that are heavily irrigated or areas that are underlain by well‐drained sediments; more fertilizer is typically applied on land with well‐drained sediments than on poorly drained sediments because well‐drained sediments have a low organic‐matter content and low moisture capacity. Concentrations of other inorganic constituents related to agriculture, such as potassium and chloride from potash fertilizers, and calcium and magnesium from liming, also are significantly elevated in ground water beneath the agricultural areas. These constituents together impart a distinctive agricultural‐chemical trademark to the ground water, different from natural water.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 144 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |