Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODO; Global Ecolo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms?

Authors: Asta Audzijonyte; Diego R. Barneche; Alan Baudron; Jonathan Belmaker; Timothy Clark; C. Tara Marshall; John R. Morrongiello; +1 Authors

Is oxygen limitation in warming waters a valid mechanism to explain decreased body sizes in aquatic ectotherms?

Abstract

AbstractAimThe negative correlation between temperature and body size of ectothermic animals (broadly known as the temperature‐size rule or TSR) is a widely observed pattern, especially in aquatic organisms. Studies have claimed that the TSR arises due to decreased oxygen solubility and increasing metabolic costs at warmer temperatures, whereby oxygen supply to a large body becomes increasingly difficult. However, mixed empirical evidence has led to a controversy about the mechanisms affecting species’ size and performance under different temperatures. We review the main competing genetic, physiological and ecological explanations for the TSR and suggest a roadmap to move the field forward.LocationGlobal.TaxaAquatic ectotherms.Time period1980–present.ResultsWe show that current studies cannot discriminate among alternative hypotheses and none of the hypotheses can explain all TSR‐related observations. To resolve this impasse, we need experiments and field‐sampling programmes that specifically compare alternative mechanisms and formally consider energetics related to growth costs, oxygen supply and behaviour. We highlight the distinction between evolutionary and plastic mechanisms, and suggest that the oxygen limitation debate should separate processes operating on short, decadal and millennial time‐scales.ConclusionsDespite decades of research, we remain uncertain whether the TSR is an adaptive response to temperature‐related physiological (enzyme activity) or ecological changes (food, predation and other mortality), or a response to constraints operating at a cellular level (oxygen supply and associated costs). To make progress, ecologists, physiologists, modellers and geneticists should work together to develop a cross‐disciplinary research programme that integrates theory and data, explores time‐scales over which the TSR operates, and assesses limits to adaptation or plasticity. We identify four questions for such a programme. Answering these questions is crucial given the widespread impacts of climate change and reliance of management on models that are highly dependent on accurate representation of ecological and physiological responses to temperature.

Subjects by Vocabulary

Microsoft Academic Graph classification: Mechanism (biology) Ecology Climate change Adaptive response Poikilotherm Ectotherm Environmental science Adaptation Empirical evidence Global and Planetary Change

Keywords

Global and Planetary Change, Ecology, Ecology, Evolution, Behavior and Systematics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    108
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 48
    download downloads 51
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    108
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
    Powered byBIP!BIP!
  • 48
    views
    51
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
108
Top 1%
Top 10%
Top 1%
48
51
bronze