
SUMMARY It has been asserted in the literature that the low pass filtering of time series data may lead to erroneous results when calculating attractor dimensions. Here we prove that finite order, non-recursive filters do not have this effect. In fact, a generic, finite order, non-recursive filter leaves invariant all the quantities that can be estimated by using embedding techniques such as the method of delays.
low pass filtering, fractal dimensions, embedding techniques, Signal detection and filtering (aspects of stochastic processes)
low pass filtering, fractal dimensions, embedding techniques, Signal detection and filtering (aspects of stochastic processes)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 68 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
