Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Evolutionarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Evolution
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Evolution
Article . 2004 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Evolution
Article . 2004 . Peer-reviewed
Data sources: Crossref
Evolution
Article . 2004
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FRACTAL GEOMETRY IS HERITABLE IN TREES

Authors: Jennifer A. Schweitzer; Thomas G. Whitham; Joseph K. Bailey; Randy K. Bangert; Stephen M. Shuster; R. Talbot Trotter;

FRACTAL GEOMETRY IS HERITABLE IN TREES

Abstract

Understanding the genetic basis to landscape vegetation structure is an important step that will allow us to examine ecological and evolutionary processes at multiple spatial scales. Here for the first time we show that the fractal architecture of a dominant plant on the landscape exhibits high broad-sense heritability and thus has a genetic basis. The fractal architecture of trees is known to influence ecological communities associated with them. In a unidirectional cottonwood-hybridizing complex (Populus angustifolia x P. fremontii) pure and hybrid cottonwoods differed significantly in their fractal architecture, with phenotypic variance among backcross hybrids exceeding that of F1 hybrids and of pure narrowleaf cottonwoods by two-fold. This result provides a crucial link between genes and fractal scaling theory, and places the study of landscape ecology within an evolutionary framework.

Related Organizations
Keywords

Analysis of Variance, Fractals, Phenotype, Populus, Quantitative Trait, Heritable, Hybridization, Genetic, Biological Evolution, Ecosystem

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    26
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
26
Average
Top 10%
Top 10%
bronze