Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Global Change Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Global Change Biology
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2022
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2022
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 7 versions
addClaim

Links across ecological scales: Plant biomass responses to elevated CO2

Authors: Julia Maschler; Lalasia Bialic‐Murphy; Joe Wan; Louise C. Andresen; Constantin M. Zohner; Peter B. Reich; Andreas Lüscher; +8 Authors

Links across ecological scales: Plant biomass responses to elevated CO2

Abstract

AbstractThe degree to which elevated CO2 concentrations (e[CO2]) increase the amount of carbon (C) assimilated by vegetation plays a key role in climate change. However, due to the short‐term nature of CO2 enrichment experiments and the lack of reconciliation between different ecological scales, the effect of e[CO2] on plant biomass stocks remains a major uncertainty in future climate projections. Here, we review the effect of e[CO2] on plant biomass across multiple levels of ecological organization, scaling from physiological responses to changes in population‐, community‐, ecosystem‐, and global‐scale dynamics. We find that evidence for a sustained biomass response to e[CO2] varies across ecological scales, leading to diverging conclusions about the responses of individuals, populations, communities, and ecosystems. While the distinct focus of every scale reveals new mechanisms driving biomass accumulation under e[CO2], none of them provides a full picture of all relevant processes. For example, while physiological evidence suggests a possible long‐term basis for increased biomass accumulation under e[CO2] through sustained photosynthetic stimulation, population‐scale evidence indicates that a possible e[CO2]‐induced increase in mortality rates might potentially outweigh the effect of increases in plant growth rates on biomass levels. Evidence at the global scale may indicate that e[CO2] has contributed to increased biomass cover over recent decades, but due to the difficulty to disentangle the effect of e[CO2] from a variety of climatic and land‐use‐related drivers of plant biomass stocks, it remains unclear whether nutrient limitations or other ecological mechanisms operating at finer scales will dampen the e[CO2] effect over time. By exploring these discrepancies, we identify key research gaps in our understanding of the effect of e[CO2] on plant biomass and highlight the need to integrate knowledge across scales of ecological organization so that large‐scale modeling can represent the finer‐scale mechanisms needed to constrain our understanding of future terrestrial C storage.

Countries
Switzerland, Switzerland, Denmark
Keywords

CO fertilization, global carbon cycle, carbon dioxide; carbon turnover; CO2 fertilization; free-air CO2 enrichment (FACE); global carbon cycle; plant demography; terrestrial carbon storage, Review, Carbon Cycle, plant demography, XXXXXX - Unknown, free-air CO enrichment (FACE), Humans, Biomass, CO2 fertilization, Ecosystem, carbon dioxide, terrestrial carbon storage, Carbon Dioxide, Plants, Carbon, carbon turnover, free-air CO2 enrichment (FACE)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 1%
Top 10%
Top 1%
Green
hybrid