
Abstract Despite the importance of the geographical arrangement of populations for the inference of species boundaries, only a few approaches that integrate spatial information into species delimitation have thus far been developed. Persistent differentiation of sympatric groups of individuals is the best criterion for species status. Species delimitation becomes more prone to error if allopatric metapopulations are considered because it is often difficult to assess whether observed differences between allopatric metapopulations would be sufficient to prevent the fusion of these metapopulations upon contact. We propose a novel approach for testing the hypothesis that the multilocus genetic distances between individuals or populations belonging to two different candidate species are not larger than expected based on their geographical distances and the relationship of genetic and geographical distances within the candidate species. A rejection of this null hypothesis is an argument for classifying the two studied candidate species as distinct species. Case studies show that the proposed tests are suitable to distinguish between intra‐ and interspecific differentiation. The regression approach proposed here is more appropriate for testing species hypotheses with regard to isolation by distance than (partial) Mantel tests. Our tests assume a linear relationship between genetic and (transformed) geographical distances. This assumption can be compromised by a high genetic variability within populations as found in a case study with microsatellite markers.
Geography, Models, Genetic, Genetic Variation, Plants, Phylogeny, genetic distance; geographical distance; isolation by distance; species delineation; taxonomy; Genetic Variation; Geography; Microsatellite Repeats; Models, Genetic; Phylogeny; Plants, Microsatellite Repeats
Geography, Models, Genetic, Genetic Variation, Plants, Phylogeny, genetic distance; geographical distance; isolation by distance; species delineation; taxonomy; Genetic Variation; Geography; Microsatellite Repeats; Models, Genetic; Phylogeny; Plants, Microsatellite Repeats
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 41 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
