Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . Conference object . Other literature type . 2020 . 2019 . Peer-reviewed
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://zenodo.org/record/3891...
Article
License: CC BY
Data sources: UnpayWall
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

technique for finding and investigating the strongest combinations of cyberattacks on smart grid infrastructure

Authors: Igor Kotsiuba; Inna Skarga-Bandurova; Alkiviadis Giannakoulias; Mykhailo Chaikin; Aleksandar Jevremovic;

technique for finding and investigating the strongest combinations of cyberattacks on smart grid infrastructure

Abstract

Recently, smart grids have become a vector of the energy policy of many countries. Due to structural and operation features, smart grids are a constant target of combined and simultaneous cyberattacks. To maximize security and to optimize existing network schemes to prevent cyber intrusion, in this paper, we propose an approach to decision support in finding and identifying the most potent attack combinations that can set the system to maximum damage. The main purpose is to identify the most severe combinations of attacks on smart grid components that potentially can be implemented from the perspective of the attacker. In this context, the problem of finding weaknesses points in the network configuration of a smart grid and assessing the impact of events on cyberinfrastructure is considered. The technique for detecting and investigating the strongest combinations of cyberattacks on the smart grid network is given with an example of the analysis of the spread of pandemic software in a system with arbitrary structure. 

Powered by OpenAIRE graph
Found an issue? Give us feedback