
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Data exchange between multiple renewable energy power plant owners can lead to an improvement in forecast skill thanks to the spatio-temporal dependencies in time series data. However, owing to business competitive factors, these different owners might be unwilling to share their data. In order to tackle this privacy issue, this paper formulates a novel privacy-preserving framework that combines data transformation techniques with the alternating direction method of multipliers. This approach allows not only to estimate the model in a distributed fashion but also to protect data privacy, coefficients and covariance matrix. Besides, asynchronous communication between peers is addressed in the model fitting, and two different collaborative schemes are considered: centralized and peer-to-peer. The results for a solar energy dataset show that the proposed method is robust to privacy breaches and communication failures, and delivers a forecast skill comparable to a model without privacy protection.
Distributed learning, Renewable energy, Reactive power, Data models, Time series analysis, Predictive models, Vector autoregression, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Privacy-preserving, Peer-to-peer computing, Data privacy, Forecasting
Distributed learning, Renewable energy, Reactive power, Data models, Time series analysis, Predictive models, Vector autoregression, /dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy; name=SDG 7 - Affordable and Clean Energy, Privacy-preserving, Peer-to-peer computing, Data privacy, Forecasting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
views | 16 | |
downloads | 40 |