<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
While it is a widespread understanding that the sustainability of the global economy requires a transition to a circular economy paradigm where a growing share of the raw materials resources used for the manufacturing of the products are recycled when products reach their end-of-life, still this much-needed transition faces organizational and technical challenges. The key technical and economic bottlenecks are in the automation of disassembly. In this article, we propose a viable functional framework for the systematic analysis, design, and implementation of disassembly cells. This framework consists of two main parts: a systematic categorization of disassembly tasks and a modular and flexible hardware (HW)/software (SW) architecture of a disassembly cell able to implement the disassembly tasks. We analyze and categorize human manipulation when disassembling a common object of daily working activities as a new companion concept to the more common concept of daily life activities. We tested and validated our methodology on the disassembly of a car suspension.
robotics, TK7800-8360, Industrial engineering. Management engineering, dismantling, dual arm, Circular economy (CE), Electronics, T55.4-60.8, disassembly
robotics, TK7800-8360, Industrial engineering. Management engineering, dismantling, dual arm, Circular economy (CE), Electronics, T55.4-60.8, disassembly
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |