<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Predicting the behaviour (i.e., manoeuvre/trajectory) of other road users, including vehicles, is critical for the safe and efficient operation of autonomous vehicles (AVs), a.k.a., automated driving systems (ADSs). Due to the uncertain future behaviour of vehicles, multiple future behaviour modes are often plausible for a vehicle in a given driving scene. Therefore, multimodal prediction can provide richer information than single-mode prediction, enabling AVs to perform a better risk assessment. To this end, we propose a novel multimodal prediction framework that can predict multiple plausible behaviour modes and their likelihoods. The proposed framework includes a bespoke problem formulation for manoeuvre prediction, a novel transformer-based prediction model, and a tailored training method for multimodal manoeuvre and trajectory prediction. The performance of the framework is evaluated using three public highway driving datasets, namely NGSIM, highD, and exiD. The results show that our framework outperforms the state-of-the-art multimodal methods in terms of prediction error and is capable of predicting plausible manoeuvre and trajectory modes.
8 pages, 3 figures, submitted to IEEE RAL
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Robotics, Robotics (cs.RO), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Robotics, Robotics (cs.RO), Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |