
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11567/1074946
The flexibility and adaptability of modular and re-configurable robots opens up new opportunities for on-demand robot morphology optimization for varying tasks. In particular, multi-arm robotic systems can expand the solution space for any given task. In this paper, we present a novel approach to exploit this feature for generating optimal fit-to-task robot structures with respect to a minimum-effort objective. By describing the task in terms of relative poses between the end-effector and the constraint frame, and making use of the relative Jacobian, the minimum effort optimization problem can be equally expressed for single-arm or multi-arm robots. We test our approach for a peg-in-hole and a contour-following task and compare the performance of the optimal solution obtained with that of a standard manipulator configuration.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 2 | |
downloads | 13 |