
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We propose to formulate the problem of representing a distribution of robot configurations (e.g. joint angles) as that of approximating a product of experts. Our approach uses variational inference, a popular method in Bayesian computation, which has several practical advantages over sampling-based techniques. To be able to represent complex and multimodal distributions of configurations, mixture models are used as approximate distribution. We show that the problem of approximating a distribution of robot configurations while satisfying multiple objectives arises in a wide range of problems in robotics, for which the properties of the proposed approach have relevant consequences. Several applications are discussed, including learning objectives from demonstration, planning, and warm-starting inverse kinematics problems. Simulated experiments are presented with a 7-DoF Panda arm and a 28-DoF Talos humanoid.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 4 | |
downloads | 17 |