<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 20.500.14243/419155
We present the Interactive Classification System (ICS), a web-based application that supports the activity of manual text classification. The application uses machine learning to continuously fit automatic classification models that are in turn used to actively support its users with classification suggestions. The key requirement we have established for the development of ICS is to give its users total freedom of action: they can at any time modify any classification schema and any label assignment, possibly reusing any relevant information from previous activities. We investigate how this requirement challenges the typical scenarios faced in machine learning research, which instead give no active role to humans or place them into very constrained roles, e.g., on-demand labeling in active learning processes, and always assume some degree of batch processing of data. We satisfy the "total freedom" requirement by designing an unobtrusive machine learning model, i.e., the machine learning component of ICS as an unobtrusive observer of the users, that never interrupts them, continuously adapts and updates its models in response to their actions, and it is always available to perform automatic classifications. Our efficient implementation of the unobtrusive machine learning model combines various machine learning methods and technologies, such as hash-based feature mapping, random indexing, online learning, active learning, and asynchronous processing.
Automatic text classification, machine learning, Active learning, automatic text classification, Online learning, online learning, Machine learning, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
Automatic text classification, machine learning, Active learning, automatic text classification, Online learning, online learning, Machine learning, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=openaire____::8eeee2e84f30671337591b4fc85e533b&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=openaire____::8eeee2e84f30671337591b4fc85e533b&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=openaire____::0cc337bafe7d5b4470d672176b3389e6&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=openaire____::0cc337bafe7d5b4470d672176b3389e6&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=openaire____::54c28fa55445237590b191f2a9564bf0&type=result"></script>');
-->
</script>
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=openaire____::54c28fa55445237590b191f2a9564bf0&type=result"></script>');
-->
</script>
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |