publication . Conference object . 2020

Advanced Hardware Architectures for Turbo Code Decoding Beyond 100 Gb/s

Stefan Weithoffer; Oliver Griebel; Rami Klaimi; Charbel Abdel Nour; Norbert Wehn;
Open Access
  • Published: 25 May 2020
  • Publisher: IEEE
  • Country: France
Abstract
International audience; In this paper, we present two new hardware archi-tectures for Turbo Code decoding that combine functional, spatial and iteration parallelism. Our first architecture is the first fully pipelined iteration unrolled architecture that supports multiple frame sizes. This frame flexibility is achieved by providing a set of interleavers designed to achieve a hardware implementation with a reduced routing overhead. The second architecture efficiently utilizes the dynamics of the error rate distribution for different decoding iterations and is comprised of two stages. First, a fully pipelined iteration unrolled decoder stage applied for a predeter...
Persistent Identifiers
Subjects
free text keywords: Turbo decoder, Forward Error Correction, Fully Parallel, High-throughput, [INFO.INFO-IT]Computer Science [cs]/Information Theory [cs.IT], [INFO.INFO-AR]Computer Science [cs]/Hardware Architecture [cs.AR], [SPI.TRON]Engineering Sciences [physics]/Electronics, Forward Error Correction, Turbo decoder, Fully Parallel, High-throughput, Multiple frame, Decoding methods, Computer hardware, business.industry, business, Turbo code, Implementation, Architecture, Word error rate, Computer science, Forward error correction, Throughput
Related Organizations
Funded by
EC| EPIC
Project
EPIC
Enabling Practical Wireless Tb/s Communications with Next Generation Channel Coding
  • Funder: European Commission (EC)
  • Project Code: 760150
  • Funding stream: H2020 | RIA
Validated by funder
22 references, page 1 of 2

[1] E. Dahlman, S. Parkvall, J. Peisa, and H. Tullberg. 5g evolution and beyond. In 2019 IEEE 20th Int. Workshop on Sig. Proc. Adv. in Wireless Commun. (SPAWC), pages 1-5, July 2019. [OpenAIRE]

[2] C. Berrou and A. Glavieux. Near optimum error correcting coding and decoding: turbo-codes. IEEE Trans. on Commun., 44(10):1261-1271, Oct 1996.

[3] D. J. C. MacKay and R. M. Neal. Near shannon limit performance of low density parity check codes. Electronics Letters, 33(6):457-458, March 1997.

[4] P. Schla¨fer, N. Wehn, M. Alles, and T. Lehnigk-Emden. A new dimension of parallelism in ultra high throughput ldpc decoding. In IEEE Inter. Worksh. on Sig. Proc. (SiPS), pages 153-158, Oct 2013.

[5] A. Balatsoukas-Stimming, M. Meidlinger, R. Ghanaatian, G. Matz, and A. Burg. A fully-unrolled ldpc decoder based on quantized message passing. In IEEE Inter. Worksh. on Sig. Proc. (SiPS), pages 1-6, Oct 2015.

[6] R. Garzo´n-Boho´rquez, C. Abdel Nour, and C. Douillard. Protographbased interleavers for punctured turbo codes. IEEE Trans. on Commun., 66(5):1833-1844, May 2018.

[7] A. Li, L. Xiang, T. Chen, R. G. Maunder, B. M. Al-Hashimi, and L. Hanzo. Vlsi implementation of fully parallel lte turbo decoders. IEEE Access, 4:323-346, 2016.

[8] S. Weithoffer, C. A. Nour, N. Wehn, C. Douillard, and C. Berrou. 25 years of turbo codes: From mb/s to beyond 100 gb/s. In Int. Symp. on Turbo codes and iter. proc. (ISTC), pages 1-6, Dec 2018.

[9] C. Berrou, Y. Saouter, C. Douillard, S. Kerouedan, and M. Jezequel. Designing good permutations for turbo codes: towards a single model. In IEEE Int. Conf. on Commun. (ICC), volume 1, pages 341-345, June 2004.

[10] S. Scholl, P. Schla¨fer, and N. Wehn. Saturated min-sum decoding: An “afterburner” for ldpc decoder hardware. In Design, Autom.and Test in Eu. Conf. (DATE), pages 1219-1224, March 2016.

[11] T. Ilnseher, F. Kienle, C. Weis, and N. Wehn. A 2.15gbit/s turbo code decoder for lte advanced base station applications. In Int. Symp. on Turbo codes and iter. proc. (ISTC), pages 21-25, Aug 2012.

[12] R. Shrestha and R. P. Paily. High-throughput turbo decoder with parallel architecture for lte wireless communication standards. IEEE TCAS I: Regular Papers, 61(9):2699-2710, Sep. 2014.

[13] Y. Sun and J.R. Cavallaro. Efficient hardware implementation of a highly-parallel 3GPP LTE/LTE-advance turbo decoder. Integration VLSI Journal, 2010.

[14] C. Roth, S. Belfanti, C. Benkeser, and Q. Huang. Efficient parallel turbodecoding for high-throughput wireless systems. IEEE TCAS I: Regular Papers, 61(6):1824-1835, June 2014.

[15] S. Weithoffer, F. Pohl, and N. Wehn. On the applicability of trellis compression to turbo-code decoder hardware architectures. In Int. Symp. on Turbo codes and iter. proc. (ISTC), pages 61-65, Sep. 2016.

22 references, page 1 of 2
Any information missing or wrong?Report an Issue