Downloads provided by UsageCounts
handle: 11583/2833232
General Purpose Graphic Processing Units (GPGPUs) are effective solutions for high-demanding data processing applications. Recently, they started to be used even in safety-critical applications, such as autonomous car driving systems. GPGPUs are implemented using the latest semiconductor technologies, which are more prone to faults arising during the lifetime operation. However, until now fault mitigation solutions were not extensively included in GPGPUs, due to the limited reliability requirements of the applications they were originally intended for (e.g., gaming or multimedia). This work proposes a dynamically configurable self- repairing mechanism aimed at mitigating the impact of permanent faults in the Scalar Processor (SP) cores in GPGPUs. The mechanism is based on spare modules that can be used to replace faulty SPs when a fault is detected. A configuration instruction allows dynamically controlling in software the selection of the set of active SPs in the SM. The method is extremely flexible since it does not require any change in the application software. Experimental results show that the solution introduces a moderate area overhead while allowing continue working even in the case of any permanent faults affecting the SPs.
Fault mitigation, Fault tolerance, General Purpose Graphics Processing Units (GPGPUs), Graphics Processors.
Fault mitigation, Fault tolerance, General Purpose Graphics Processing Units (GPGPUs), Graphics Processors.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 6 | |
| downloads | 10 |

Views provided by UsageCounts
Downloads provided by UsageCounts