
doi: 10.1109/vts.2008.45
With increasing IC process variation and increased operating speed, it is more likely that even subtle defects will lead to the malfunctioning of a circuit. Various fault models, such as the transition fault model and the path-delay model, have been used to aid delay defect detection. However, these models are not efficient for small-delay defect coverage or for test pattern generation time. Error sequence analysis utilizes the order in which the errors occur during a frequency sweep of a transition test to identify small- delay defects that may escape the same test applied in the conventional way. Moreover, it can detect such defects even in the presence of inter-die process variations, such as lot-to-lot and wafer-to-wafer process variation. In addition, error sequence analysis is very effective in separating devices with delay defects from devices that have failed due to process variation.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
