
pmid: 35576415
In this brief, we consider the stability of inertial memristor-based neural networks with time-varying delays. First, delayed inertial memristor-based neural networks are modeled as continuous systems in the flux-current-voltage-time domain via the mathematical model of Hewlett-Packard (HP) memristor. Then, they are reduced to delayed inertial neural networks with interval parameters uncertainties. Quasi-equilibrium points and quasi-stability are proposed. Quasi-stability criteria of delayed inertial memristor-based neural networks are obtained by matrix measure method, the Halanay inequality, and uncertainty technologies. In the end, a numerical example is provided to show the validity of our results.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
