Downloads provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>handle: 11562/1053228
In this paper we propose a new methodology to model surgical procedures that is specifically tailored to semi-autonomous robotic surgery. We propose to use a restricted version of statecharts to merge the bottom-up approach, based on data-driven techniques (e.g., machine learning), with the top-down approach based on knowledge representation techniques. We consider medical knowledge about the procedure and sensing of the environment in two concurrent regions of the statecharts to facilitate re-usability and adaptability of the modules. Our approach allows producing a well defined procedural model exploiting the hierarchy capability of the statecharts, while machine learning modules act as soft sensors to trigger state transitions. Integrating data driven and prior knowledge techniques provides a robust, modular, flexible and re-configurable methodology to define a surgical procedure which is comprehensible by both humans and machines. We validate our approach on the three surgical phases of a Robot-Assisted Radical Prostatectomy (RARP) that directly involve the assistant surgeon: bladder mobilization, bladder neck transection, and vesicourethral anastomosis, all performed on synthetic manikins.
surgical robotics, statecharts, supervisory controller, autonomous robotics
surgical robotics, statecharts, supervisory controller, autonomous robotics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 8 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 2 | |
| downloads | 7 |

Views provided by UsageCounts
Downloads provided by UsageCounts