
We consider the scenario in which a set of sources generate messages in a network and a receiver node demands an arbitrary linear function of these messages. We formulate an algebraic test to determine whether an arbitrary network can compute linear functions using linear codes. We identify a class of linear functions that can be computed using linear codes in every network that satisfies a natural cut-based condition. Conversely, for another class of linear functions, we show that the cut-based condition does not guarantee the existence of a linear coding solution. For linear functions over the binary field, the two classes are complements of each other.
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Mathematics, Mathematics - Commutative Algebra, Commutative Algebra (math.AC)
FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT), FOS: Mathematics, Mathematics - Commutative Algebra, Commutative Algebra (math.AC)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 29 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
