
This study proposes an end-to-end framework for solving multi-objective optimization problems (MOPs) using Deep Reinforcement Learning (DRL), that we call DRL-MOA. The idea of decomposition is adopted to decompose the MOP into a set of scalar optimization subproblems. Then each subproblem is modelled as a neural network. Model parameters of all the subproblems are optimized collaboratively according to a neighborhood-based parameter-transfer strategy and the DRL training algorithm. Pareto optimal solutions can be directly obtained through the trained neural network models. In specific, the multi-objective travelling salesman problem (MOTSP) is solved in this work using the DRL-MOA method by modelling the subproblem as a Pointer Network. Extensive experiments have been conducted to study the DRL-MOA and various benchmark methods are compared with it. It is found that, once the trained model is available, it can scale to newly encountered problems with no need of re-training the model. The solutions can be directly obtained by a simple forward calculation of the neural network; thereby, no iteration is required and the MOP can be always solved in a reasonable time. The proposed method provides a new way of solving the MOP by means of DRL. It has shown a set of new characteristics, e.g., strong generalization ability and fast solving speed in comparison with the existing methods for multi-objective optimizations. Experimental results show the effectiveness and competitiveness of the proposed method in terms of model performance and running time.
FOS: Computer and information sciences, Optimization and Control (math.OC), FOS: Mathematics, Computer Science - Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE), Mathematics - Optimization and Control
FOS: Computer and information sciences, Optimization and Control (math.OC), FOS: Mathematics, Computer Science - Neural and Evolutionary Computing, Neural and Evolutionary Computing (cs.NE), Mathematics - Optimization and Control
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 184 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
