Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Conference object . 2023
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/powert...
Article . 2023 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of Grid Forming and Grid Following Control of A Central Bes In A Island System Operating In High Res Penetration

Authors: Dimitris Lagos; Nikos Hatziargyriou;

Comparison of Grid Forming and Grid Following Control of A Central Bes In A Island System Operating In High Res Penetration

Abstract

There is an increasing trend worldwide to extend the renewable energy sources (RES) penetration in island power systems. The replacement of synchronous generators with inverter based resources (IBR) can result in critical frequency transients due to the lack of physical inertia. Under these conditions, a central Battery Energy Storage (BES) plays a crucial role in maintaining safety in the power supply of the island system. Existing grid-tied BES inverters mainly operate as grid-following sources that synchronize with the grid to control their output. To achieve 100% RES penetration however, the central BES should operate as a grid forming source in certain periods. During the change of its control mode severe transients can occur that can trigger installed protection equipment, which is a concern that has not been discussed thoroughly in literature. In contrast, grid forming control emulating a virtual synchronous generator can provide continuous control of the frequency and voltage by the central BES, making it possible to ensure seamless transition to 100% RES penetration. In this work, the impact of grid forming and grid following inverter controls on an island system are presented for the actual case of the island of Astypalea. A control hardware in the loop testbed is used to study the issues that can occur during frequency control with existing protection equipment.

Keywords

Grid forming, Grid following, Control hardware in the loop

Powered by OpenAIRE graph
Found an issue? Give us feedback
Funded by