Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Open Journal of...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Open Journal of Control Systems
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Feature Construction Using Network Control Theory and Rank Encoding for Graph Machine Learning

Authors: Said, Anwar; Wei, Yifan; Ahmad, Obaid Ullah; Shabbir, Mudassir; Abbas, Waseem; Koutsoukos, Xenofon;

Feature Construction Using Network Control Theory and Rank Encoding for Graph Machine Learning

Abstract

In this article, we utilize the concept of average controllability in graphs, along with a novel rank encoding method, to enhance the performance of Graph Neural Networks (GNNs) in social network classification tasks. GNNs have proven highly effective in various network-based learning applications and require some form of node features to function. However, their performance is heavily influenced by the expressiveness of these features. In social networks, node features are often unavailable due to privacy constraints or the absence of inherent attributes, making it challenging for GNNs to achieve optimal performance. To address this limitation, we propose two strategies for constructing expressive node features. First, we introduce average controllability along with other centrality metrics (denoted as NCT-EFA) as node-level metrics that capture critical aspects of network topology. Building on this, we develop a rank encoding method that transforms average controllability or any other graph-theoretic metric into a fixed-dimensional feature space, thereby improving feature representation. We conduct extensive numerical evaluations using six benchmark GNN models across four social network datasets to compare different node feature construction methods. Our results demonstrate that incorporating average controllability into the feature space significantly improves GNN performance. Moreover, the proposed rank encoding method outperforms traditional one-hot degree encoding, improving the ROC AUC from 68.7% to 73.9% using GraphSAGE on the GitHub Stargazers dataset, underscoring its effectiveness in generating expressive and efficient node representations.

Keywords

Machine Learning, FOS: Computer and information sciences, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average