
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>In this article, we utilize the concept of average controllability in graphs, along with a novel rank encoding method, to enhance the performance of Graph Neural Networks (GNNs) in social network classification tasks. GNNs have proven highly effective in various network-based learning applications and require some form of node features to function. However, their performance is heavily influenced by the expressiveness of these features. In social networks, node features are often unavailable due to privacy constraints or the absence of inherent attributes, making it challenging for GNNs to achieve optimal performance. To address this limitation, we propose two strategies for constructing expressive node features. First, we introduce average controllability along with other centrality metrics (denoted as NCT-EFA) as node-level metrics that capture critical aspects of network topology. Building on this, we develop a rank encoding method that transforms average controllability or any other graph-theoretic metric into a fixed-dimensional feature space, thereby improving feature representation. We conduct extensive numerical evaluations using six benchmark GNN models across four social network datasets to compare different node feature construction methods. Our results demonstrate that incorporating average controllability into the feature space significantly improves GNN performance. Moreover, the proposed rank encoding method outperforms traditional one-hot degree encoding, improving the ROC AUC from 68.7% to 73.9% using GraphSAGE on the GitHub Stargazers dataset, underscoring its effectiveness in generating expressive and efficient node representations.
Machine Learning, FOS: Computer and information sciences, Machine Learning (cs.LG)
Machine Learning, FOS: Computer and information sciences, Machine Learning (cs.LG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
