
Recently emerged 6G space-air-ground integrated networks (SAGINs), which integrate satellites, aerial networks, and terrestrial communications, offer ubiquitous coverage for various mobile applications. However, the highly dynamic, open, and heterogeneous nature of SAGINs poses severe security issues. Forming a defense line of SAGINs suffers from two preliminary challenges: 1) accurately understanding massive unstructured multi-dimensional threat information to generate defense strategies against various malicious attacks, 2) rapidly adapting to potential unknown threats to yield more effective security strategies. To tackle the above two challenges, we propose a novel security framework for SAGINs based on Large Language Models (LLMs), which consists of two key ingredients LLM-6GNG and 6G-INST. Our proposed LLM-6GNG leverages refined chain-of-thought (CoT) reasoning and dynamic multi-agent mechanisms to analyze massive unstructured multi-dimensional threat data and generate comprehensive security strategies, thus addressing the first challenge. Our proposed 6G-INST relies on a novel self-evolving method to automatically update LLM-6GNG, enabling it to accommodate unknown threats under dynamic communication environments, thereby addressing the second challenge. Additionally, we prototype the proposed framework with ns-3, OpenAirInterface (OAI), and software-defined radio (SDR). Experiments on three benchmarks demonstrate the effectiveness of our framework. The results show that our framework produces highly accurate security strategies that remain robust against a variety of unknown attacks. We will release our code to contribute to the community.
Accepted by IEEE Communications Magazine
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)
FOS: Computer and information sciences, Computer Science - Cryptography and Security, Cryptography and Security (cs.CR)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
