Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Computer Graphi...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Computer Graphics and Applications
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Computer Graphics and Applications
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://dx.doi.org/10.14288/1....
Other literature type . 2017
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Topological Modeling for Vector Graphics

Authors: James D. Foley; Boris Dalstein;

Topological Modeling for Vector Graphics

Abstract

In recent years, with the development of mobile phones, tablets, and web technologies, we have seen an ever-increasing need to generate vector graphics content, that is, resolution-independent images that support sharp rendering across all devices, as well as interactivity and animation. However, the tools and standards currently available to artists for authoring and distributing such vector graphics content have many limitations. Importantly, basic topological modeling, such as the ability to have several faces share a common edge, is largely absent from current vector graphics technologies. In this thesis, we address this issue with three major contributions. First, we develop theoretical foundations of vector graphics topology, grounded in algebraic topology. More specifically, we introduce the concept of Point-Curve-Surface complex (PCS complex) as a formal tool that allows us to interpret vector graphics illustrations as non-manifold, non-planar, non-orientable topological spaces immersed in R2, unlike planar maps which can only represent embeddings. Second, based on this theoretical understanding, we introduce the vector graphics complex (VGC) as a simple data structure that supports fundamental topological modeling operations for vector graphics illustrations. It allows for the direct representation of incidence relationships between objects, while at the same time keeping the geometric flexibility of stacking-based systems, such as the ability to have edges and faces overlap each others. Third and last, based on the VGC, we introduce the vector animation complex (VAC), a data structure for vector graphics animation, designed to support the modeling of time-continuous topological events, which are common in 2D hand-drawn animation. This allows features of a connected drawing to merge, split, appear, or disappear at desired times via keyframes that introduce the desired topological change. Because the resulting space-time complex directly captures the time-varying topological structure, features are readily edited in both space and time in a way that reflects the intent of the drawing.

Keywords

004

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid