
Next generation driver assistance systems require precise self localization. Common approaches using global navigation satellite systems (GNSSs) suffer from multipath and shadowing effects often rendering this solution insufficient. In urban environments this problem becomes even more pronounced. Herein we present a system for six degrees of freedom (DOF) ego localization using a mono camera and an inertial measurement unit (IMU). The camera image is processed to yield a rough position estimate using a previously computed landmark map. Thereafter IMU measurements are fused with the position estimate for a refined localization update. Moreover, we present the mapping pipeline required for the creation of landmark maps. Finally, we present experiments on real world data. The accuracy of the system is evaluated by computing two independent ego positions of the same trajectory from two distinct cameras and investigating these estimates for consistency. A mean localization accuracy of 10 cm is achieved on a 10 km sequence in an inner city scenario.
ddc:620, Engineering & allied operations, info:eu-repo/classification/ddc/620, 620
ddc:620, Engineering & allied operations, info:eu-repo/classification/ddc/620, 620
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 61 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
