Downloads provided by UsageCounts
Peak shaving applications provided by energy storage systems are sustainable solutions for enhancing the existing capacity of distribution feeders and transformers in order to maintain their safe and reliable operation under an increased penetration of renewable energy sources and load demand growth. This work investigates the integration of a flywheel energy storage system installed in a feeder of a distribution network to provide peak shaving services. An empirical model is defined to determine the energy losses of a prototype flywheel system using an experimental setup. Furthermore, a multi-objective optimization scheme is proposed to minimize the flywheel energy losses along with the violated peak power of the feeder. Three different objective functions for applying peak shaving are presented and their efficiency is investigated in the simulation results. Finally, the impact of the flywheel energy losses on the peak shaving application of the distribution feeder is examined using a prototype and a commercial-grade flywheel energy storage system.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 6 | |
| downloads | 23 |

Views provided by UsageCounts
Downloads provided by UsageCounts