
Topological signal processing, especially persistent homology, is a growing field of study for analyzing sets of data points that has been heretofore applied to unlabeled data. In this work, we consider the case of labeled data and examine the topology of the decision boundary separating different labeled classes. Specifically, we propose a novel approach to construct simplicial complexes of decision boundaries, which can be used to understand their topology. Furthermore, we illustrate one use case for this line of theoretical work in kernel selection for supervised classification problems.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
