
pmid: 23366489
Ideal Brain Computer Interfaces need to perform asynchronously and at real time. We propose Hidden Semi-Markov Models (HSMM) to better segment and classify EEG data. The proposed HSMM method was tested against a simple windowed method on standard datasets. We found that our HSMM outperformed the simple windowed method. Furthermore, due to the computational demands of the algorithm, we adapted the HSMM algorithm to an online setting and demonstrate that this faster version of the algorithm can run in real time.
Brain-Computer Interfaces, Humans, Electroencephalography, Algorithms, Markov Chains
Brain-Computer Interfaces, Humans, Electroencephalography, Algorithms, Markov Chains
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
