Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://www.research...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1109/ciss.2...
Article . 2018 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
ETH Zürich Research Collection
Conference object . 2018
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linearized binary regression

Authors: Andrew S. Lan; Christoph Studer; Mung Chiang;

Linearized binary regression

Abstract

Probit regression was first proposed by Bliss in 1934 to study mortality rates of insects. Since then, an extensive body of work has analyzed and used probit or related binary regression methods (such as logistic regression) in numerous applications and fields. This paper provides a fresh angle to such well-established binary regression methods. Concretely, we demonstrate that linearizing the probit model in combination with linear estimators performs on par with state-of-the-art nonlinear regression methods, such as posterior mean or maximum aposteriori estimation, for a broad range of real-world regression problems. We derive exact, closed-form, and nonasymptotic expressions for the mean-squared error of our linearized estimators, which clearly separates them from nonlinear regression methods that are typically difficult to analyze. We showcase the efficacy of our methods and results for a number of synthetic and real-world datasets, which demonstrates that linearized binary regression finds potential use in a variety of inference, estimation, signal processing, and machine learning applications that deal with binary-valued observations or measurements.

To be presented at CISS (http://ee-ciss.princeton.edu/)

Keywords

Methodology (stat.ME), FOS: Computer and information sciences, Statistics - Machine Learning, FOS: Mathematics, Mathematics - Statistics Theory, Machine Learning (stat.ML), Statistics Theory (math.ST), Statistics - Methodology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Average
Green