Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio istituziona...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Modular Design and Optimization of Biomedical Applications for Ultralow Power Heterogeneous Platforms

Authors: De Giovanni, Elisabetta; Montagna, Fabio; Denkinger, Benoit W.; Machetti, Simone; Peon-Quiros, Miguel; Benatti, Simone; Rossi, Davide; +2 Authors

Modular Design and Optimization of Biomedical Applications for Ultralow Power Heterogeneous Platforms

Abstract

In the last years, remote health monitoring is becoming an essential branch of health care with the rapid development of wearable sensors technology. To meet the demand of new more complex applications and ensuring adequate battery lifetime, wearable sensors have evolved into multicore systems with advanced power-saving capabilities and additional heterogeneous components. In this article, we present an approach that applies optimization and parallelization techniques uncovered by modern ultralow power (ULP) platforms in the SW layers with the goal of improving the mapping and reducing the energy consumption of biomedical applications. Additionally, we investigate the benefit of integrating domain-specific accelerators to further reduce the energy consumption of the most computationally expensive kernels. Using 30-s excerpts of signals from two public databases, we apply the proposed optimization techniques on well-known modules of biomedical benchmarks from the state-of-the-art and two complete applications. We observe speed-ups of $5.17{\times }$ and energy savings of 41.6% for the multicore implementation using a cluster of 8 cores with respect to single-core wearable sensor designs when processing a standard 12-lead electrocardiogram (ECG) signal analysis. Additionally, we conclude that the minimum workload required to take advantage of parallelization for a heartbeat classifier corresponds to the processing of 3-lead ECG signals, with a speed-up of $2.96{\times }$ and energy savings of 19.3%. Moreover, we observe additional energy savings of up to 7.75% and 16.8% by applying power management and memory scaling to the multicore implementation of the 3-lead beat classifier and 12-lead ECG analysis, respectively. Finally, by integrating hardware (HW) acceleration we observe overall energy savings of up to 51.3% for the 12-lead ECG analysis.

Keywords

embedded , health monitoring multicore, Accelerator architectures; biomedical monitoring; edge computing; memory management; multi-core processing; wearable sensors

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 127
    download downloads 5
  • 127
    views
    5
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
10
Top 10%
Average
Top 10%
127
5
Green
bronze