Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Construction Innovat...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Construction Innovation
Article . 2016 . Peer-reviewed
License: Emerald Insight Site Policies
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Discrete event simulation: a vital tool for a concurrent life cycle design

Authors: Noha M. Hassan; Mohamed Al Hosani; Ali Al Hadhrami; Talal Al Maazmi;

Discrete event simulation: a vital tool for a concurrent life cycle design

Abstract

Purpose – The purpose of this study is to examine whether discrete event simulation (DES) can be equally utilised in the design phase of the architecture, engineering and construction industry (AEC) projects to achieve a more efficient facility layout. Facility design is a complex process involving diverse disciplines, tasks, tools and events. Integrating key participants involved in the design generally leads to a more satisfied end-user. The AEC thoroughly examined different approaches to enhance this integration through improved communication, visualisation and coordination among the different project participants. DES has been used extensively as a tool for analysis and evaluation, especially during the construction process. Design/methodology/approach – A facility planning framework is illustrated that combines both qualitative and quantitative analysis to achieve a performance-driven design. An investigative qualitative research approach is used to determine the design criteria and performance metrics based on the end-user and authority requirements. This approach is achieved by conducting critical reviews, surveys, focus groups and interviews. The research findings and collected data are used to perform a quantitative analysis to determine the effectiveness of the proposed design if constructed using DES. The potential of the method is shown through a case study to design a mall parking facility. Findings – The case study illustrated the capability of DES to improve construction design by comparing the artificially designed facility following the proposed framework to an existing facility. Increasing customer satisfaction by enhancing safety, minimising waiting time and maximising parking spot availability were the performance metrics used to evaluate the designs. DES was used as a tool to measure these criteria. Utilising DES in facility design increased resource utilisation and resulted in a safer layout that satisfied the end-user, client and authority requirements. Originality/value – Previous studies focused on integrating other modules such as energy, HVAC, lighting, acoustics and life cycle analysis to achieve a performance-driven design. The overwhelming majority of the literature focused on the use of DES for improving construction operations. Research literature about integrating DES as a tool for concurrent life cycle design was scarce. This research demonstrated that DES is an effective method and a vital key for determining the facility’s operational efficiency after construction.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!