Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Earrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physical Review E
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review E; ZENODO
Article . 2005 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: ZENODO; Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

mass fractal dimension and the compactness of proteins

Authors: Enright, Matthew B.; Leitner, David M.;

mass fractal dimension and the compactness of proteins

Abstract

Vibrational dynamics and energy flow in a protein are related by Alexander-Orbach theory to the protein's mass fractal dimension D and spectral dimension d . Proteins: Struct., Funct. Bioinf. 55, 529 (2004)] recently proposed a relation between d and protein size based on their computational analysis of a set of proteins ranging from about 100 to several thousand amino acids. We report here values for D computed for 200 proteins from the Protein Data Bank (PDB) ranging from about 100 to over 10 000 amino acids and examine variation of D with protein size. The average D is found to be 2.5, significantly smaller than a completely compact three-dimensional collapsed polymer. Indeed, we find that on average a protein in its PDB configuration fills about three-quarters of the volume within the protein surface. Protein mass is also found to scale with radius of gyration with an exponent of 2.5 for this set of proteins.

Related Organizations
Keywords

Models, Molecular, Crystallography, Protein Conformation, Molecular Sequence Data, Proteins, Molecular Weight, Structure-Activity Relationship, Fractals, Models, Chemical, Computer Simulation, Amino Acid Sequence

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1K
    download downloads 407
  • 1K
    views
    407
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
103
Top 10%
Top 10%
Top 10%
1K
407
hybrid