publication . Article . Preprint . 2020

Magnon Accumulation in Chirally Coupled Magnets

Yu, Tao; Zhang, Yu-Xiang; Sharma, Sanchar; Zhang, Xiang; Blanter, Yaroslav M.; Bauer, Gerrit E. W.;
Open Access English
  • Published: 11 Mar 2020
  • Country: Netherlands
Abstract
We report strong chiral coupling between magnons and photons in microwave waveguides that contain chains of small magnets on special lines. Large magnon accumulations at one edge of the chain emerge when exciting the magnets by a phased antenna array. This mechanism holds the promise of new functionalities in non-linear and quantum magnonics.
Comment: 6 pages, 3 figures
Persistent Identifiers
Subjects
arXiv: Condensed Matter::Strongly Correlated Electrons
free text keywords: General Physics and Astronomy, NanOQTech, Quantum Technologies, Condensed Matter - Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics, Magnon, Microwave, Condensed matter physics, Photon, Physics, Magnet, Antenna array, Coupling (physics), Quantum, Magnonics
Funded by
EC| NanOQTech
Project
NanOQTech
Nanoscale Systems for Optical Quantum Technologies
  • Funder: European Commission (EC)
  • Project Code: 712721
  • Funding stream: H2020 | RIA
Validated by funder
Download fromView all 7 versions
Open Access
ZENODO
Article . 2020
Providers: ZENODO
Open Access
NARCIS
Article . 2020
Providers: NARCIS
54 references, page 1 of 4

[1] A. Auerbach, Interacting Electrons and Quantum Magnetism (Springer-Verlag, New York, 1994).

[2] M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); T. Kasuya, Prog. Theor. Phys. 16, 45 (1956); K. Yosida, Phys. Rev. 106, 893 (1957).

[3] H. Suhl, Phys. Rev. 109, 606 (1958).

[4] T. Nakamura, Progr. Theoret. Phys. (Kyoto) 20, 542 (1958).

[5] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, Cambridge, England, 1995).

[6] O. O. Soykal, and M. E. Flatte, Phy. Rev. Lett. 104, 077202 (2010).

[7] H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, Phy. Rev. Lett. 111, 127003 (2013).

[8] Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Phy. Rev. Lett. 113, 083603 (2014).

[9] X. Zhang, C.-L. Zou, L. Jiang, and H. X. Tang, Phy. Rev. Lett. 113, 156401 (2014).

[10] X. Zhang, C.-L. Zou, N. Zhu, F. Marquardt, L. Jiang, and H. X. Tang, Nat. Comm. 6, 8914 (2015).

[11] N. J. Lambert, J. A. Haigh, S. Langenfeld, A. C. Doherty, and A. J. Ferguson, Phys. Rev. A 93, 021803(R) (2016).

[12] B. Z. Rameshti and G. E. W. Bauer, Phys. Rev. B 97, 014419 (2018).

[13] N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77, 570 (1996).

[14] C. M. Bender, D. C. Brody, and H. F. Jones, Phys. Rev. Lett. 89, 270401 (2002).

[15] C. M. Bender, D. C. Brody, H. F. Jones, and B. K. Meister, Phys. Rev. Lett. 98, 040403 (2007).

54 references, page 1 of 4
Any information missing or wrong?Report an Issue