Actions
  • shareshare
  • link
  • cite
  • add
add
auto_awesome_motion View all 14 versions
Publication . Article . Preprint . 2018

Lasing in the superradiant crossover regime

Kamanasish Debnath; Yuan Zhang; Klaus Mølmer;
Open Access
Published: 26 Dec 2018 Journal: Physical Review A (issn: 2469-9926, Copyright policy )
Abstract
A new class of laser, which harnesses coherence in both light and atoms, is possible with the use of ultra-cold alkaline earth atoms trapped in an optical lattice inside an optical cavity. Different lasing regimes, including superradiance, superradiant and conventional lasing, are distinguished by the relative coherence stored in the atoms and in the cavity mode. We analyze the physics in two different experimentally achievable regions of the superradiant lasing regime. Our calculations confirm the narrow linewidth of superradiant lasing for the doubly forbidden clock transition ${}^3 P_0 \to {}^1 S_0$ of strontium-87 atoms. Under strong driving of the dipole-forbidden transition ${}^3 P_1 \to {}^1 S_0$ of strontium-88 atoms the superradiant linewidth narrows further due to the coherent excitation of the cavity field.
Comment: 7 pages, 3 figures
Subjects by Vocabulary

arXiv: Physics::Optics Physics::Atomic Physics Condensed Matter::Quantum Gases Physics::Atomic and Molecular Clusters

Microsoft Academic Graph classification: Optical cavity law.invention law Laser linewidth Coherence (physics) Excitation Optical lattice Lasing threshold Atomic physics Superradiance Laser Physics

Subjects

nanoqtech, rare earth, quantum technologies, Quantum Physics (quant-ph), Atomic Physics (physics.atom-ph), Optics (physics.optics), FOS: Physical sciences, Quantum Physics, Physics - Atomic Physics, Physics - Optics

14 references, page 1 of 2

[1] J. P. Gordon, H. J. Zeiger, and C. H. Townes, Physical Review 99, 1264 (1955).

[2] A. L. Schawlow and C. H. Townes, Phys. Rev. 112, 1940 (1958).

[3] R. H. Dicke, Phys. Rev. 93, 99 (1954).

[4] D. Meiser, J. Ye, D. R. Carlson, and M. J. Holland, Phys. Rev. Lett. 102, 163601 (2009).

[5] D. Meiser and M. J. Holland, Phys. Rev. A 81, 033847 (2010).

[6] M. Xu, D. A. Tieri, E. C. Fine, J. K. Thompson, and M. J. Holland, Phys. Rev. Lett. 113, 154101 (2014).

[7] J. G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M. J. Holland, and J. K. Thompson, Nature 484, 78 (2012).

[8] M. A. Norcia and J. K. Thompson, Phys. Rev. X 6, 011025 (2016).

[9] M. A. Norcia, M. N. Winchester, J. R. Cline, and J. K. Thompson, Science Advances 2, 37 (2016), 1603.05671.

[10] D. A. Tieri, M. Xu, D. Meiser, J. Cooper, and M. J. Holland, ArXiv preprint: 1702.04830 (2017).

Funded by
EC| NanOQTech
Project
NanOQTech
Nanoscale Systems for Optical Quantum Technologies
  • Funder: European Commission (EC)
  • Project Code: 712721
  • Funding stream: H2020 | RIA
Validated by funder
,
EC| SQUARE
Project
SQUARE
Scalable Rare Earth Ion Quantum Computing Nodes
  • Funder: European Commission (EC)
  • Project Code: 820391
  • Funding stream: H2020 | RIA
Validated by funder
,
EC| NanOQTech
Project
NanOQTech
Nanoscale Systems for Optical Quantum Technologies
  • Funder: European Commission (EC)
  • Project Code: 712721
  • Funding stream: H2020 | RIA
Validated by funder
,
EC| SQUARE
Project
SQUARE
Scalable Rare Earth Ion Quantum Computing Nodes
  • Funder: European Commission (EC)
  • Project Code: 820391
  • Funding stream: H2020 | RIA
Validated by funder
moresidebar